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Abstract— This report summarizes how an interacting multiple 

model (IMM) algorithm uses measurements from an imaging radar 

sensor to estimate the dynamic state of a maneuvering road object 

with unknown control inputs. The IMM algorithm mixes the outputs 

from Kalman (KF) and unscented Kalman (UKF) filters running 

constant velocity (CV), constant acceleration (CA), and coordinated 

turn (CT) motion models. Simulations are used to validate IMM 

filter theory and determine appropriate model parameters for real-

world testing. A prototype imaging radar sensor was used to capture 

measurements from a controlled scenario; using these data, the 

tuned IMM filter is shown to accurately track vehicle state. 
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I. INTRODUCTION 

Target tracking systems for objects (primarily vehicles, 
cyclists, and pedestrians) maneuvering on the road are a critically 
important component of developing autonomous self-driving 
vehicles. Accurate estimation of other road users’ position and 
velocity is necessary for safe maneuver planning [1]. Radar is a 
suitable long-range sensor for this application [2]. 

A. Objective 

The project objective is to explain and demonstrate how the 

interacting multiple model (IMM) filter algorithm can be used with 

an imaging radar sensor to track maneuvering road objects.  

The implementation steps taken were: 

1. Simulate various scenarios, test filter theory, determine 

appropriate model parameters for real-world testing 

2. Validate algorithms with real radar measurements 

II. BACKGROUND 

A. State Estimation 

State estimation is commonly performed with Bayesian filters 
[1], where for an object described by state 𝑥 at time 𝑘, the state 
transition function predicts the next value of the state 

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘 , 𝑣𝑘) 

where 𝑢𝑘  is the control input and 𝑣𝑘  is the process noise that 
describes the uncertainty of the model. The measurement function 
relates sensor measurements 𝑧𝑘 and associated noise 𝑤𝑘 with the 
state as follows: 

𝑧𝑘 = ℎ(𝑥𝑘 , 𝑤𝑘) 

Assuming the state can be described by a Markov chain, where the 
next state is a function only of the previous state and 
measurements, the state can be estimated by the recursive 
prediction and update steps of the Bayes filter.  

The Kalman filter (KF) [3] leverages the ease-of-use and low 
computational complexity of manipulating Gaussians for 
probability estimation when the transition and measurement 
functions are linear. State estimates are described by Gaussian 
distributions with mean and covariance values, and process and 
measurement noises are assumed to be zero-mean Gaussian white 
noise with covariance matrices given by 𝑄 and 𝑅. 

Nonlinear transition and measurement functions are 
incompatible with the KF, and several different derivative filters 
are commonly used. The extended Kalman filter (EKF) leverages 
Taylor-series expansions to locally linearize nonlinear functions 
𝑓(𝑥)  and ℎ(𝑥) , but only first-order terms are considered [4]. 
Jacobians of the state transition function and measurement 
function are used; they describe the rate of change of the new state 
(at time 𝑘 + 1) with respect to the old state (at time 𝑘) and have 
the form (for example for state transition function 𝑓): 

𝜕𝑓

𝜕𝑥
= [

𝜕𝑓

𝜕𝑥1

…
𝜕𝑓

𝜕𝑥𝑛

] =

[
 
 
 
 
𝜕𝑓1
𝜕𝑥1

⋯
𝜕𝑓1
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⋮ ⋱ ⋮
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𝜕𝑥1

⋯
𝜕𝑓𝑚
𝜕𝑥𝑛]

 
 
 
 

 

The Jacobians can be challenging to calculate for complex 
systems, and the limitations of a first-order approximation can 
produce errors if the system changes rapidly near the point of state 
estimation [5]. The unscented Kalman filter (UKF) addresses these 
shortcomings by using a weighted average of multiple points that 
approximate the nonlinear model [6]. Sigma points are selected 
around the state estimate mean, arranged as a function of the state 
covariance. The sigma points are transformed by the nonlinear 
function, and the resulting points are used to calculate the next state 
estimated mean and covariance. This algorithm typically has 
higher accuracy than the EKF but is computationally less efficient 
[4]. 

B. Target Tracking 

Target tracking is an application of state estimation applied to 
maneuvering (actively controlled) objects. The state transition 
function is called the motion model, and it describes the motion 
exhibited by an object as a function of the current state and control 
inputs. 

For tracking applications, however, the object’s motion model 
and control inputs are unknown. The object could be a car or truck 
with two-wheel Ackermann steering, a motorcycle with single-



wheel bicycle steering, or a robot with nonholonomic differential 
two-wheel drive steering. The tracker also doesn’t know the 
object’s control inputs – whether it will continue at a constant 
speed, accelerate, or turn.  

Motion models that can be applied to any type of maneuvering 
object track movement independent of the steering mechanism and 
object bearing: these states of these models are the object’s 
position, velocity, acceleration, and turning rate. 

A single motion model must describe any motion that the 
object will exhibit, which is generally unacceptable for tracking 
applications [7].  Consider, for example, the error associated with 
trying to predict the position of a vehicle accelerating through a 
corner with a model designed for tracking straight-line movement 
at a constant speed. 

C. Motion Models 

The following motion models have been validated with real-
world measurement data [8] and are commonly used for tracking 
purposes [9, 8, 10, 7]. The motion models are described as a 
transition matrix with associated process noise covariance matrix, 
which is applied to the state transition equation as: 

𝑥𝑘+1 = 𝐹𝑥𝑘 + 𝑣𝑘, where 𝑣𝑘 = 𝐺𝑊𝑁(0, 𝑄) 

1) Constant Velocity 
The constant velocity (CV) motion model is appropriate for 

objects traveling in a straight line (not necessarily aligned with the 
Cartesian coordinates) at a constant velocity. The model estimation 
states are [𝑥 �̇� 𝑦 �̇�], where 𝑥 refers to the longitudinal position and 
𝑦 refers to the lateral position, and �̇� and �̇� refer to velocities in the 
respective directions. The state transition matrix is: 

𝐹𝐶𝑉 = [
𝐹𝐶𝑉

′ 02𝑥2

02𝑥2 𝐹𝐶𝑉
′ ], 𝐹𝐶𝑉

′ = [
1 𝛿𝑡
0 1

] 

where 𝛿𝑡 is the amount of time since the last measurement was 
processed. The process noise covariance matrix is 

𝑄𝐶𝑉 = 𝑞 [
𝑄𝐶𝑉

′ 02𝑥2

02𝑥2 𝑄𝐶𝑉
′ ], 𝑄𝐶𝑉
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where 𝑞 is a model tuning factor. 

2) Constant Acceleration 
The constant acceleration (CA) motion model is appropriate 

for objects accelerating in a straight line (not necessarily aligned 
with the Cartesian coordinates). The model estimation states are 
[𝑥 �̇� �̈� 𝑦 �̇� �̈�], where �̈� and �̈� refer to acceleration in the respective 
directions.  

The state transition matrix is: 

𝐹𝐶𝐴 = [
𝐹𝐶𝐴

′ 03𝑥3

03𝑥3 𝐹𝐶𝐴
′ ], 𝐹𝐶𝐴
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2
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] 

and the process noise covariance matrix is 

𝑄𝐶𝐴 = 𝑞 [
𝑄𝐶𝐴
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3) Coordinated Turn 

The coordinated turn (CT) model is appropriate for objects 
moving at a constant velocity and turning at a constant rate. The 
model estimation states are [𝑥 �̇� 𝑦 �̇� 𝜔], where 𝜔 refers to the turn 
rate. 

The state transition matrix is: 

𝐹𝐶𝑇 =
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and the process noise covariance matrix is 

𝑄𝐶𝑇 = 𝑞 [

𝑄𝐶𝑇
′ 02𝑥2 0

02𝑥2 𝑄𝐶𝑇
′ 0

0 0 𝜎𝑤𝑒𝑟𝑟
2

], 𝑄𝐶𝑇
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𝛿𝑡3

2
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where 𝜎𝑤𝑒𝑟𝑟
2  is the initial uncertainty for the turn rate. 

D. Interacting Multiple Model Algorithm 

The IMM algorithm overcomes the single-model limitation of 
the various Kalman filters by combining state estimations from 
several different filters with different motion models. The IMM 
determines the probability each model tracks the target’s motion, 
and then builds a state estimate through a weighted average of the 
model outputs [9]. The blended state estimate is used by all models 
on the next iteration, which is the “interacting” component of the 

IMM. This mixing strategy accounts for the unknown control 
inputs and time-varying dynamics of the target [1, 9, 11]. It has 
been proven to perform better than any single model algorithm in 
complex tracking problems [12].  

An IMM algorithm using UKF prediction is shown in Fig. 1, 
described in the sections below, and detailed more thoroughly in 
[1, 9, 13].  

1) Interaction + Mode Probability Prediction 

The posterior (mean �̂�𝑗,𝑘−1 and covariance 𝑃𝑗,𝑘−1) state of each 

of the 𝑟 filters (where 𝑖, 𝑗 ∈ {1,2, … , 𝑟}) from the previous time 
step 𝑘 − 1 interact with each other as weighted mixing functions: 

�̂�𝑗,𝑘−1
∗ = ∑ 𝜇𝑖|𝑗,𝑘�̂�𝑖,𝑘−1

𝑟

𝑖=1

 

Fig. 1  Overview of the IMM-UK-PDA tracking filter at time step k [1] 



𝑃𝑗,𝑘−1
∗ = ∑𝜇𝑖|𝑗,𝑘 [𝑃𝑖,𝑘−1 + (�̂�𝑖,𝑘−1 − �̂�𝑗,𝑘−1

∗ )(�̂�𝑖,𝑘−1 − �̂�𝑗,𝑘−1
∗ )

𝑇
]

𝑟

𝑖=1

 

where 𝜇𝑖|𝑗,𝑘 is not the mean (yes, this is confusing terminology, 

but is consistent in literature) but rather describes the model 

probability prediction, which is the weight by which the estimate 
from the previous time step of filter 𝑖 is applied to the new filter 𝑗 
at time 𝑘, given by: 

𝜇𝑖|𝑗,𝑘 =
Π𝑖𝑗𝜇𝑖,𝑘−1

∑ Π𝑖𝑗𝜇𝑖,𝑘−1
𝑟
𝑖=1

 

where 𝜇𝑖,𝑘−1  is the probability that model 𝑖  best represents 

recent measurements, and Π𝑖𝑗  is a pre-determined transition 

probability matrix that defines how frequently we expect models 
to transition to one another: 

Π = [

𝑝11 ⋯ 𝑝𝑟1

⋮ ⋱ ⋮
𝑝1𝑟 ⋯ 𝑝𝑟𝑟

] 

where 𝑝𝑖𝑗  is the probability that motion described by model 𝑖 
will be followed by motion described by model 𝑗. 

2) Filtering 
Each filter in the IMM starts an estimate iteration with the 

mixed input state and makes predictions and updates 
independently. Measurements used for the update step are 
validated to be close enough to the state estimation mean as 
calculated by the Mahalanobis distance, which uses the innovation 
covariance matrix 𝑆𝑗,𝑘 to determine how many standard deviations 

away the measurement is from the estimated mean. 

3) Model Probability Update 
The model probabilities for each filter, which reflect how well 

the measurements fit the model, are updated as follows: 

𝜇𝑖,𝑘 =
𝑁(𝑣𝑖,𝑘, 0, 𝑆𝑖,𝑘)𝜇𝑖,𝑘−1

∑ 𝑁(𝑣𝑗,𝑘, 0, 𝑆𝑗,𝑘)𝜇𝑗,𝑘−1
𝑟
𝑗=1

 

where 𝑣𝑖,𝑘 is the measurement residual (the difference between 

the measurement and the updated state estimation), and 𝑆𝑖,𝑘 is the 

covariance. 

4) Combination 
The mean and covariance output from the IMM filter is a 

weighted combination of the individual filter outputs as follows: 

�̂�𝑘 = ∑𝜇𝑗,𝑘�̂�𝑗,𝑘

𝑟

𝑗=1

 

𝑃𝑘 = ∑𝜇𝑗,𝑘 [𝑃𝑗,𝑘 + (�̂�𝑗,𝑘 − �̂�𝑘)(�̂�𝑗,𝑘 − �̂�𝑘)
𝑇
]

𝑟

𝑗=1

 

III. MEASUREMENT SENSORS 

Various sensors are used to detect and track road objects, 
primarily camera, lidar, and radar. Each sensing modality has 
advantages and disadvantages, which can be generally 
summarized as shown in Fig. 2 from [14]. 

A. Imaging Radar Sensor Technology 

New “imaging” radar sensors with higher numbers of virtual 
transmit and receive antennas are approaching lidar-like angular 
resolution, but without the range, cost, and environmental 
limitations of lidar. This type of sensor is ideal for long-range 
target tracking. 

This project used a prototype long-range imaging radar (LRR) 
sensor from Uhnder, Inc., an Austin, TX-based startup company 
that builds a digital code modulation (DCM) radar-on-chip (RoC) 
and a radar sensor designed for ADAS and self-driving vehicle 
applications. This LRR sensor can resolve a driver walking beside 
a vehicle at ranges approaching 300m. 

B. Imaging Radar Sensor Output 

The Uhnder imaging radar sensor transmits and receives 
digitally modulated signals in the 77-81GHz automotive radar 
band. The sensor’s on-chip signal processing pipeline analyzes the 
received signals and generates various outputs at a typical rate of 
10Hz. The outputs include a minimally processed point cloud, 
filtered detections, and further filtered clusters of detections that 
represent objects that reflect energy within the sensor’s field of 
view (FoV).  

The data associated with each point are range, azimuth angle, 
elevation angle, magnitude, signal-to-noise ratio (SNR), and target 
doppler information. The sensor performs a static/dynamic 
differentiation based on the sensor’s ego-velocity, such that each 
point is identified as stationary or moving in the world coordinate 
frame. 

The volume of data from the sensor is suitable for low-level 
data fusion with lidar, or integration into a world model built with 
camera input. For the purposes of this project, however, the point 
cloud data are too voluminous to use. The project will focus on 
tracking moving objects in the sensor FoV by considering dynamic 
detection output data, which consists of as many as 50 points per 
object at ranges below 80m, and 1-5 points per object at ranges 
extending to 320m.  

C. Simulating the Radar Sensor 

During the first phase of the project, which consisted of 
validating the IMM filter theory with simulation, it was important 
to also simulate the radar sensor as a measurement system. Typical 
measurement models used in simulation reference the Cartesian 
coordinates of the simulated object and add some Gaussian white 
noise to emulate measurement uncertainty. The measurement 
noise 𝑅 is typically a diagonal matrix because the noise in x and y 
dimensions is independent. 

Radar sensors, however, measure energy reflections from a 
scene in spherical coordinates. The range 𝑟, azimuth angle 𝛼, and 

Fig. 2  Feature comparison of sensors used in self-driving cars 

 



elevation angle (which is not considered in our 2D example) 
measured by the sensor impact the shape of the noise, and when 
the resulting measurement is converted into Cartesian coordinates 
the noise in x and y dimensions is not independent, as shown in 
Fig. 3 from [15]. 

 

The measurement noise matrix is: 

𝑅 = [
𝜎𝑥

2 𝜎𝑥𝑦
2

𝜎𝑥𝑦
2 𝜎𝑦

2 ] 

where 

𝜃 =
𝜋

2
− 𝛼 

𝜎𝑥
2 = 𝜎𝑟

2 cos2(𝜃) + 𝑟2𝜎𝛼
2 sin2(𝜃) 

𝜎𝑦
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2 − 𝑟2𝜎𝛼
2] 

IV. TRACKER IMPLEMENTATION DETAILS 

A. Complexity Reduction Strategy 

Several assumptions and simplifications were taken to reduce 
the complexity of the project to ensure it could be completed 
during the timeline of the AA273 course. These decisions, and the 
technical challenges they avoid, include: 

• Operating the tracker as a stationary observer; avoiding the 
requirement of low-latency ego-velocity measurement and 
state estimation for the observer position, velocity, 
acceleration, and turn rate, also avoiding reference plane 
translation 

• Operating only a single radar sensor; avoiding the 
complexity of sensor fusion (especially challenging across 
different sensing modalities) 

• Evaluating only one maneuvering object within the scene; 
avoiding the challenges associated with multiple tracked 
objects, including track management and joint probabilistic 
data association 

• Evaluating objects with generalized 2D motion models; 
avoiding the challenges of object classification, object-
specific motion models, and tracking in the third z-
dimension 

• Evaluating only simple scenarios without excessive ground 
clutter; reducing false-positive measurements 

• Simplifying unequal state dimensions by augmenting with 
zero information; avoiding a more complicated 
implementation of the IMM filter (this is detailed more in 
Section IV.B) 

B. State 

The objective of the project is to track the state of a 
maneuvering road object, which – given we are limiting ourselves 
to tracking only in x and y dimensions – means we want to know 
the object’s position, speed, acceleration, and turning rate. 
However, the motion models described in Section II.C have 
unequal state dimensions. The CV model, for example, has state 
transfer equations for four state variables, while the CT model has 
equations for seven state variables. 

[16] addresses a systematic approach to IMM mixing for 
unequal dimension states, and while the paper recommends an 
adjustment to the IMM algorithm to augment values that are 
unused in some models with a mixing term, the performance 
impact of doing so is minimal in a tracking application where noise 
terms are relatively large. For this reason, models are augmented 
with zeros for states that aren’t referenced in the model. For 
example, the turn rate 𝜔 is zeroed in the CV and CA models. 

C. IMM Parameters 

Design parameters for the IMM filter were selected to improve 
the performance of the filter in the simulation phase of the project. 
These parameters were then used in the measurement phase. 

1) Transition Probability Matrix 
As detailed in Section II.D.1), the transition probability matrix 

determines how frequently we expect models to transition to one 
another. Based on implementation notes from [11, 7], a range of 
values were trialed, and relatively infrequent model switching was 
found to be ideal. Some small benefit was found for staying in the 
CT model slightly less frequently than the CV and CA models. 
This project used the following matrices for two- and three-model 
IMM filters: 

Π = [
0.98 0.02
0.02 0.98

], for CV, CA IMM filters 

Π = [
0.96 0.02 0.02
0.02 0.96 0.02
0.04 0.4 0.92

], for CV, CA, CT IMM filters 

2) Process Noise 
The process noise of the KF and other filters used in the IMM 

filter determine how quickly the models react to measurements that 
deviate from the predicted motion. A low process noise lags a 
change in motion, but reduces the measurement noise present in 
the system. Conversely, large process noise adapts to changes 
more quickly, but don’t reduce the measurement noise. 

To optimize the 𝑞  value to provide both acceptable 
measurement noise reduction and lag-free reaction to changes in 
the object’s exhibited dynamics, Monte Carlo simulations were run 
on the simulated scenarios. 𝑞 values between 0.1 and 10 were used 
for the different models. However, as noted in [11], the ability of 
the IMM filter to accurately track the changing dynamics of a 
target is primarily determined by how closely the filter motion 
models describe the target dynamics. 

3) Measurement Validation (Gating) 
Measurement gating was performed within the range of 5 
Mahalanobis-adjusted standard deviations of the innovation 
covariance. 

Fig. 3  Bearing noise (𝜎𝛼) and range noise (𝜎𝑟) of a radar sensor 



D. Multiple Measurements 

As detailed in Section III.B, the imaging radar sensor measures 
multiple detections from the same object as a function of the small 
angular resolution of the sensor. Each detection is an independent 
measurement, and the combination of all detections best describes 
the object’s motion.  

The IMM filter algorithm iterates when new measurements are 
received. 𝛿𝑡 is calculated as the time since the previous batch of 
measurements and a single filter predict step occurs. Each 
detection is then processed as a separate measurement with a 
separate filter update step. The final filter state estimate is therefore 
averaged across all measurements, and the IMM algorithm then 
further averages the output from the combinations of filters. 

V. RESULTS 

A. Simulation Results 

1) KF with CV model, CV 1D simulation 
The simulation was an object moving with a constant velocity 

in one dimension. The KF was used with the CV model. Innovation 
residuals show that both low-Q (q=0.01) and high-Q (q=10) 
models accurately predict the motion and accurately estimate the 
object state. Results shown in Fig. 4. 

2) KF with CA model, CV + CA 1D simulation 
The simulation was an object moving with varying velocity in 

one direction. The KF was used with the CA model. The low-Q 
(q=0.01) model was unable to react quickly enough to the object 
dynamics; the high-Q (q=10) model more accurately predicted 
the motion. Neither model perfectly estimated the object state. 
Results shown in Fig. 5. 

3) KF with CA model, CV 2D simulation with U-turn 
This simulation was an object moving with constant speed in 

a straight, u-turn, and straight motion. The KF was used with the 
CA model. Both low-Q (q=0.01) and high-Q (q=10) models were 
unable to predict the motion and lagged the measurements. 
Results shown in Fig. 6. 

4) UKF with CT model, CV 2D simulation with U-turn 
This simulation was an object moving with constant speed in 

a straight, u-turn, and straight motion. The UKF was used with 
the CT model. Both low-Q (q=0.01) and high-Q (q=10) models 

were able to predict the motion but introduced some significant 
noise in the state estimates. Results shown in Fig. 7. 

5) IMM filter with CV, CA, and CT models, CV + CA 2D 

simulation with U-turn 
This simulation was the most complex scenario, it consisted 

of an object moving with varying velocity in a straight, u-turn, 
and straight motion. The IMM filter was used with a KF running 
the CV model (q=0.1), a KF running the CA model (q=10), and a 
UKF running the CT model (q=1). The residuals and the mode 
probability graph demonstrate that the model was able to 
accurately predict the object’s motion, and the IMM model 
probability reflected the scenario setup (acceleration, a constant-

Fig. 4  KF with CV model, CV 1D simulation 

 

Fig. 5  KF with CA model, CV + CA 1D simulation 

 

Fig. 6  KF with CA model, CV 2D simulation with U-turn 

Fig. 7  UKF with CT model, CV 2D simulation with U-turn 

 

Fig. 8  IMM filter with CV, CA, and CT models, CV + CA 2D simulation 

with U-turn 



speed section, a U-turn, acceleration, and a constant-speed 
section). Results shown in Fig. 8.  

B. Measurement Results 

The Uhnder prototype radar sensor was used to collect 
measurement data from a private airport in Austin, TX. The sensor 
was mounted on a stationary vehicle with an onboard compute 
platform that captured measurement data in a rosbag. The scenario 
featured two vehicles, initially located 10m and 600m from the 
measurement system. The vehicles accelerate towards each other 
and pass each other at approximately 200m from the observer, 27 
seconds after starting. The data ends after 33.2 seconds when the 
first vehicle passes 250m and is shadowed by the second vehicle. 

Fig. 9 shows the measurement data captured by the 
measurement system at time t~5s. The main screen on the left is 
showing a significant amount of clutter returns associated with the 
trees on the left-hand side of the access road. These measurements 
were identified as being related to static objects and were not 
considered by the IMM. The bright cyan dots identify the moving 
vehicle. The camera view in the top right shows the first vehicle 
moving away from the observer. Approximately 500,000 radar 
measurements are made during the time period, of which 710 were 
associated with the first vehicle. 

The data were extracted from the rosbag and used in an IMM 
with a KF running the CV model (q=0.1) and a KF running the CA 
model (q=10). The CT model was unnecessary given the straight-
line motion of the vehicles in the scenario. Results shown in Fig. 
10 demonstrate that the IMM filter was able to correctly identify 
the motion model appropriate for the movement of the vehicle: a 
period of slow acceleration for approximately 10 seconds, a period 
of constant speed for 6 seconds, a small acceleration and 
deceleration, and an acceleration when passing the other vehicle.  

VI. CONCLUSIONS 

This project was able to successfully demonstrate that the IMM 
filter with CV, CA, and CT models was able to track simulated 

maneuvering road objects with simulated radar measurements. The 
tracking demonstrated low residual error between predicted state 
estimates and measurements, appropriate motion model selection 
for different types of simulated motion, and good matching 
between state estimate and simulated ground truth. 

Real-world imaging radar sensor measurements were also 
successfully integrated into the IMM filter framework with a CV 
and CA motion model, and the filter tracked the movement of a 
maneuvering road object under controlled conditions. Ground 
truth data for the real-world measurements were unavailable; ad 
hoc observation suggests the filter performance reflects real-world 
behaviour. 
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